If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-40x+15=0
a = 24; b = -40; c = +15;
Δ = b2-4ac
Δ = -402-4·24·15
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{10}}{2*24}=\frac{40-4\sqrt{10}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{10}}{2*24}=\frac{40+4\sqrt{10}}{48} $
| 5•12=a/11 | | (0,8x)/(x+1)=0,5 | | 12=10y+5y | | 0,8x/x+1=0,5 | | 8+x=3•12 | | 8+x=3x12 | | 6-3=9-v | | 2*(4-x)-3x=8x-7*(4-2x) | | 2.45–3.1t=21.05 | | 2.45–3.1t=21.05 | | 2x-7=4x-8 | | 4.5(0.6-x)+7.2x=3.6 | | 4.5(0.6-x)=3.6 | | -15=5(3q-10)-q5 | | -15=5(3q-10)-q | | d+10=25 | | 2b-8=16 | | c+12=9 | | 2x=4=3x-4 | | 27-4x=7(1+3x) | | 5=2(x-4) | | K^-8k=0 | | -2(4x)=-2(5x-8) | | 7(x-0.3)+4(0.3+7x)=8(x-7.2) | | 4+3n=4(2n+6) | | 6x=-5(x-5)+8 | | V=5x20 | | (9w+2)/4+(3w-4)/2=6 | | 6x=9(2x) | | 2=8.4-3x-x | | 3^x-9x=0 | | 4=5.5-5x |